Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Phase-field model for crystallization in alkali disilicate glasses; Li$$_2$$O-2SiO$$_2$$, Na$$_2$$O-2SiO$$_2$$ and K$$_2$$O-2SiO$$_2$$

Kawaguchi, Munemichi; Uno, Masayoshi*

Journal of the Ceramic Society of Japan, 128(10), p.832 - 838, 2020/10

 Times Cited Count:3 Percentile:17(Materials Science, Ceramics)

This study developed phase-field method (PFM) technique in oxide melt system by using a new mobility coefficient ($$L$$). The crystal growth rates ($$v_0$$) obtained by the PFM calculation with the constant $$L$$ were comparable to the thermodynamic driving force in normal growth model. The temperature dependence of the $$L$$ was determined from the experimental crystal growth rates and the $$v_0$$. Using the determined $$L$$, the crystal growth rates ($$v$$) in alkali disilicate glasses, Li$$_2$$O-2SiO$$_2$$, Na$$_2$$O-2SiO$$_2$$ and K$$_2$$O-2SiO$$_2$$ were simulated. The temperature dependence of the $$v$$ was qualitatively and quantitatively so similar that the PFM calculation results demonstrated the validity of the $$L$$. Especially, the $$v$$ obtained by the PFM calculation appeared the rapid increase just below the thermodynamic melting point ($$T_{rm m}$$) and the steep peak at around $$T_{rm m}$$-100 K. Additionally, as the temperature decreased, the $$v$$ apparently approached zero ms$$^-1$$, which is limited by the $$L$$ representing the interface jump process. Furthermore, we implemented the PFM calculation for the variation of the parameter $$B$$ in the $$L$$. As the $$B$$ increased from zero to two, the peak of the $$v$$ became steeper and the peak temperature of the $$v$$ shifted to the high temperature side. The parameters $$A$$ and $$B$$ in the $$L$$ increased exponentially and decreased linearly as the atomic number of the alkali metal increased due to the ionic potential, respectively. This calculation revealed that the $$A$$ and $$B$$ in the $$L$$ were close and reasonable for each other.

JAEA Reports

Numerical analysis of interfacial growth and deformation in horizontal stratified two-phase flow by lattice Boltzmann method

Ebihara, Kenichi

JAERI-Research 2005-004, 121 Pages, 2005/03

JAERI-Research-2005-004.pdf:19.79MB

This report is the JAERI's report version of the doctor thesis by the author. In this report, first, the validity and usefulness of the application of the two-phase fluid model of the lattice-gas method and the lattice Boltzmann method(LBM) are examined. On the basis of the examination, next, the horizontal stratified two-phase flow that is the fundamental and important flow is simulated by the HCZ model which is one of the two-phase fluid model of the LBM. It is seen that the interfacial growth of the HCZ model satisfies the Kelvin-Helmholtz instability theory and reproduces the theoretical two-phase flow regime map of Taitel and Dukler(T-D map). It is found that more superficial flow velocity of the rare phase is necessary in the channel with the narrow width. The HCZ model can also simulate the droplet generation accompanying more complex interfacial phenomena and reproduce the experimental correlation of Ishii and Grolmes in the range of the distribution of the experimental data.

Journal Articles

Study on interfacial growth and deformation of horizontal stratified two-phase flow by lattice Boltzmann method

Ebihara, Kenichi

Tsukuba Daigaku Daigakuin Shisutemu Joho Kogaku Kenkyuka Hakase Gakui Rombun, 134 Pages, 2004/09

In this thesis, first the liquid-gas models of the lattice method are examined by applying them to two-phase flow simulations. Next the liquid-gas model(the HCZ model) of the lattice Boltzmann method is applied to the three-dimensional simulation of the horizontal stratified two-phase flow. The following results are obtained. (1)The two- and three- dimensional interface simulated by the HCZ model satisfies the Kelvin-Helmholtz instability theory. (2)In the simulation of the interfacial growth in the rectangular channel, it is found that the relation between the interfacial growth and the flow state is in agreement with the flow regime map proposed theoretically by Taitel and Dukler. (3)It is also found that the three dimensionality becomes remarkable and the interfacial growth needs more flow rate of the rare phase than that of the theoretical flow regime map when the channel width is narrower. (4)In the droplet creation simulation, it is found that the relation between the droplet creation and the flow state simulates the experimental correlation proposed by Ishii and Grolmes.

Journal Articles

Evaluation of influence of pipe width on interfacial growth of horizontal stratified two-phase flow in rectangular pipe by lattice Boltzmann method

Ebihara, Kenichi; Watanabe, Tadashi

Nihon Kikai Gakkai Rombunshu, B, 70(694), p.1393 - 1399, 2004/06

The horizontal stratified two-phase flow in the rectangular pipe whose width in smaller than the height is simulated by the one-component two-phase lattice Boltzmann method. The interfacial growth between two phases is measured for three cases with the different pipe width and the measured dimensionless number charactering the two-phase flow is compared with the flow regime map proposed by Taitel and Dukler. It is found that the boundary separating the interfacical growth from the non-growth which is obtained by the simulations is larger in the flow regime map when the pipe width is narrower.

4 (Records 1-4 displayed on this page)
  • 1